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Ab&cL We me a gauge-invariant 'reference~section' and define the geometric chase for 
all quantum evolutions in a closed form. This geometric phase is obtained by integrating 
the inner product of the 'reference section' and its palh derivative along the evolution curve 
which is valid for nonqclic, non-unitary and nondchr6dinger evolutions of quantum 
systems. Two non-trivial examples are studied to realize our new expression. 

Recent y v s  have seen !he successful prediction and generalization of the Berry phase 
[ I ,  21 from adiabatic, parametric variation to cyclic quantum evolutions [3,4] and, 
next, non-unitary and non-cyclic evolutions [5], which has left its imprint on almost 
a11 areasof physics [6]. Simon [2] interpreted the adiabatic Berry phase as the holonomy 
transformation in paral!el transporting the adiabatic eigenstate in parameter space. The 
present author has interpreted the Aharonov and Anandan phase in terms of the integral 
of the contracted length of the curve [7,9]. Until today the geometric phase for non- 
cyclic evolution has been defined by closing the end-points by the shortest geodesic. It 
is an indirect definition, because if the end-points of the open path are not closed the 
geometric phase is not manifestly gauge-invariant, 

This paper aims at giving a new prescription for obtaining the geometric phase for 
non-cyclic, non-unitary and arbitrary quantum evolutions without expli6tly closing the 
initial and final points by a geodesic. Using a 'reference~section' of the bundle covering 
the curve in the projective Hilbert space we define the gauge-invariant and reparametriz- 
ation-invariant geometric phase. To illustrate the result obtained, we calculate the non- 
cyclic geometric phase for a spin-; particle undergoing arbitrary precession. Also, we 
consider a non-cyclic, non-unitary and non-Schr6dinger evolution, such as a sequence 
of filtering measurements, to show the existence of the geometric phase. 

Let 2 be the Hilbert space of dimension n +  1, i.e. %=@"+' and the set of vectors 
{ y } ~ 2 .  Let 2 be the unit normed Hilbert space and the set of vectors { y/ll wll) €2. 
The state of a quantum system is determined b y a  ray of the Hilbert space sP. The set 
of rays of 2 is called the projective Hilbert space 9. The projection map II:*P+P is 
a principal fibre bundle 2(9,~ U ( ] ) ,  n),'with structure group U(1). This can be seen 
by considering the action of the multiplicative group C* of non-zero complex numbers 
on the space C"'-{O} given by the equivalence relation (zl,zz,. . . ,Z.+~)A:= 
(z,A, z2A,. . . . z,,+,A) V hC*. This is a free action and the orbit space is the space CP" 
of complex lines in the Hilbert space 2=@"+'. Thus, we get the principal bundle 
@*+C"+'-{O)+CP"=9 in which the projection map associates with each n + l  
tuple (2,. zz, . .~. , zn+ ,) the point in CP" with the homogeneous coordinates 
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(2, , z2, . . . , z " + ~ ) .  Thus, a quantum state at a given instant of time is represented by a 
point in 9' and the evolution of the system is given by a curve r in 2, which projects 
to a curve f=n(r) in 9. 

During a non-cyclic evolution the final state and the initial state do not differ merely 
by a phase factor because they belong to two different rays. The evolution curve is an 
open curve which lies in 2. The projection of the open curve r : f+ [  y ( t ) )  is n(r)= 
f and it lies in 9. In the case of a cyclic evolution ([yr>=exp(i$)l vi)) the closed curve 
?when lifted to 2, then the phase $characterizes the gauge transformation necessary 
for closing C in 2. In the case of non-cyclic evolution the open path f if lifted to 2, 
then the initial and the final points correspond to two different rays and there is no 
such global gauge transformation to close these points. However, there is a way to 
compare the phases of the state vectors belonging to two different rays via the Panchar- 
atnam [IO] connection. It is simple, yet important Pancharatnam connection. The rela- 
tive phase difference between the states I yi)=Iy( t i ) )  and [yr)=l y(&)) (if they are 
non-orthogonal) is given by 

If ( yil yr )  is real and positive, then the quantum system does not acquire any phase 
during an evolution from time ti to t r .  This is the well known Pancharatnam connection. 
Here we emphasize that the phase difference given by ( I )  is true in general irrespective 
of closing the initial and the final points and it is the total phase acquired by a quantum 
system during an arbitrary quantum evolution between [ t i ,  tt], i.e. 

We intend to give a prescription of how to separate out the geometric phase from the 
total phase [$I: which will be independent of the detail dynamics of the system and 
bring out its full geometric nature by showing its dependence uniquely only on the 
image of the curve 

For the evolution under consideration, namely the non-cyclic evolution, let us con- 
sider the lift of an open path in 9 to 9, then there may be many open curves in 2. 
But there exists one special curve (which we have recognized for the first time) which 
is traced out by a 'reference section' in the U(]) bundle of normed Hilbert space vectors 
over the projective Hilbert space 9. This section can be defined with respect to the 
initial state vector Iy(t i))  and the information about the geometric phase is obtained 
by integrating the inner product of the section and its path derivative from the initial 
point to the final point of the evolution curve. 

To define this curve we consider a reference 'section' [ ,yO(t))  of the bundle covering 
p(r)=n( ly( f ) ) ) .  This is a map ~ 9 - 9  such that the image of each point p ( t ) ~ . 9  
lies in the fibre n ( p )  over p, i.e. nos=ida, with the following properties: 

in the projective Hilbert space PP. 

(9  snf l  ~ ( l i ) ) ) = l  y(~i))=lXdti)) 

meaning sending IT([ y( t i ) ) )E9 to [ y(ti)) and [x,;(ti)) and [ y(ti)) begin at the same 
point in the same ray. 

(ii) n(lxt,(f)>)=n(l Y ( 0 ) )  v t d t i ,  td 

i.e. the curves rj(t) and r(t) project to the same open curve f, 
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(iii) (xo(t i ) lxs(t)>- real and positive v =[ti, trl 

state I x,,(ti) >. 

by 

i.e. at any later time t, Ix,;(t)> keeps its phase unchanged with respect to the initial 

Keeping in mind the above properties we can see that the new 'section' (with respect 
to the initial point) is a mapping of the state curve f through the section sand is given 

This 'reference section' of the bundle covering the curve f in 9 will be used to define 
the geometric phase for any arbitrary quantum evolution. In this sense equation (3) is 
an important step in our paper. Now it is easy to see that the following equation is 
obtained on differentiating (3): 

The dynamical phase for non-cyclic, not-unitary and non-Schredinger evolutions of 
quantum systems is given by 

Note that ( 5 )  reduces to the well known expression of the dynamical phase, namely 
s=[$d];= -I/?? J-,'(v(t)lH(t)l y( t ) )  d/, for cyclic, unitary and Schrodinger evolutions 
of quantum systems. 

The total phase (this is an important recognition in our derivation) is given by 

(6) 
The desired expression for the geometric phase during an arbitrary quantum evolution 
is given by 

[OD,]:[= [@]:[-[ad]: 
or 

where k's are the coordinate in the projective Hilbert space 9. 
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That [ag]: is the geometric phase can be seen by virtue of its various properties. It 
is manifestly gauze-invariant. Because under U( 1) action I v(f)>-+eiu(') I v W > ,  however, 
'the reference section' Ixi(f)) undergoes a global gauge transformation by some fixed 
amount, i.e. ~xi(f))-.ei"""~x,(t)> and hence the geometric phase remains the same. It 
is manifestly gauge-invariant not only under U(1) action but also under a general 
transformation [l l]  of the type ly(t))-l y(t'))=c(L)Iy(t)), where c(f) is an arbitrary 
smooth complex function and c ( t ) ~ C *  with 1 ( ( f ) 1  # 1. Under this transformation Ix:(t))  
transforms by a global phase factor and hence the geometric phase remains invariant. 
This is the beauty of the 'reference section' that it enables us to say that [-$& is a 
property of the projection of I y ( t ) )  in 9 rather than of I v(f)) itself. It is also repara- 
metrization-invariant, i.e. by changing the parameter from f to t' with df'/dt>O, the 
geometric phase remains unaltered and hence it is aproperty of only the unparametrized 
path f in 9'. In addition to this, the real geometric phase is independent of the particular 
Hamiltonian used to evolve the quantum system along a given curve I- in 9, rather it 
depends uniquely only on the curve f in 9. Unlike Samuel and Bhandari's [5] definition, 
our geometric phase has its own existence and physical meaning even if we do not close 
the end-points by a geodesic. It is important to note that the adiabatic Berry phase and 
the non-adiabatic AA phase can be considered as the special cases of the phase (7) .  

The above-mentioned properties, in fact, constitute the set of properties which char- 
acterize the geometric nature of some structures associated with an arbitrary quantum 
evolution. Thus, our expression (7) being an integral of a non-local integrand, provides 
for the first time a compact formula for the geometric phase during an arbitrary qnan- 
twn evolution. Clearly, it is non-additive, in contrast to the dynamical phase which 
is a locally additive functional of r, being an integral along of a locally defined 
integrand. 

In defining the geometric phase for open curves we have used a (local) 'reference 
section'. It may give the impression that the geometric phase is of local nature. However, 
this is not so. We can see that the geometric phase ( 7 )  depends not only on the geometry 
of the path of evolution but also on the 'area' enclosed by a closed curve which the 
system has not visited (the closed curve is obtained by joining the end-points of the 
open curve 'by a shortest geodesic). In this sense the geometric phase is of non-local 
nature. Also, the presence of orthogonal normed vectors in the Hilbert space does not 
pose any problem. In order to validate (7) all we require is that the initial vector and 
the final vector should not be orthogonal because we have started from Pancharatnam's 
definition of phase which is valid only for non-orthogonal rays. For orthogonal rays 
the Pancharatnam phase becomes indeterminate (since no interference takes place 
between those rays). However, during the evolution, if the system passes through a 
point which is orthogonal to the initial point, then at that point the integrand is given 
by its limit along the curve and is finite [ 121. Hence (7) is valid even if the system passes 
through an orthogonal point during its evolution. 

It is sometimes said [ 131 that there are many ways of choosing the lift o f f ,  thereby 
making either total phase equal to zero (then [a,]:= -[@d]r;) or dynamical phase equal 
to zero (then [@I::= [@g]3. However, in this paper we have chosen a special lift of f 
in such a way that neither [@I:: nor [Qd]:; is zero and we still have a compact formula 
for the geometric phase. These above lines may give an impression that there are other 
choices of auxiliary connections which lead to different holonomies for a non-cyclic 
path. We can see clearly that this is not so. The local connection defined through a 
'reference section' is the only one which is compatible with the non-cyclic, non-unitary 
and non-Schrodinger evolutions of~quantum systems. This connection not only allows 
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us to compare the geometric phase of two vectors in the same ray but also of two 
vectors (non-orthogonal) belonging to two different rays. For example, if we have a 
different lift (say) horizontal lift, then we will have the section Ip(t)) which undergoes 
parallel transportation. The section lV(f))  is given by 

Choosing this lift is equivalent to making the dynamical phase zero and the geometric 
phase is given by 

or 

[@J$=arg(V(fi)l V(tr)>. (9) 

But from OUT expression (3) (which is a different lift) we can see that the 'reference 
section' I,yj(t)) and the section 1 VI(?)) are related by 

Using the expression for the geometric phase (7) we get 

=arg(V(ti)l Vftf )>. (1 1) 

Here we have used the fact that ( V ( t ) l @ ( f ) ) = O .  Thus, choosing different lifts, other 
expressions for the~geometric phase can be found but all of them are identical to the 
one given by (7). Hence, the geometric phase defined in (7) for open paths is a unique 
one. 

As an application of the above results we consider the example of a spin-; particle 
undergoing arbitrary precession in a magnetic field. This is a simple yet non-trivial 
example. The state vector lives in a two-dimensional Hilbert space X = C 2  and the 
projective Hilbert space 9 = P , ( C )  is the real two-dimensional sphere S2. We can imag- 
ine a non-cyclic and non-unitary evolution of a spin state. The state vector at any time 
f is represented by a two-component spinor in (e, 4) representation as 

where A is a positive number. This is the simplest   representation of a non-unitary 
evolution where the norm of the vector is not a constant; rather it changes with time 
as dll y(t)ll/dt= -311 ~ ( 0  II. 

The 'reference section' Ixj(t)) is given by 
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where 

and 

cos(B(r)+ 0,)/2 
cos(Q(t)-Bi)/2 

p( t ,  ti) = #(t)/2+ tan-' 

For a non-cyclic and non-unitary evolution (0 goes from 0i to Or and Q goes from Qi 
to &), the geometric phase calculated on using (7) is given by 

The geometric phase will be equal to half the solid angle subtended at the centre of 
a unit sphere by a closed circuit obtained by joining the end-points of the open curve 
f by the shortest geodesic. At this point we can easily be convinced that for a cyclic 
quantum evolution the above geometric phase reduces to [Q$=P(C) = 
f $ ( 1  -cos 0) de, which is nothing but the Aharonov and Anandan phase for a spin- 
$ particle. 

To better illustrate the result, we consider the example of a non-unitary evolution, 
such as a sequence of filtering measurements. A beam of particles polarized along z 
with initial vector 1 1 )  is split into two orthogonal components (Ix) and In)), i.e. 
Ix ) (x~z )+  lX)(alz). When this passes through a filter we have filtered component 
Ix)(x~z) (the component [X)(alr) is discarded and the intensity is reduced by f). 
Suppose I x ) (x l z )  passes through another apparatus oriented along y (in which the I?) 
component is discarded and the intensity is reduced by 8. The filtered component is 
[y)(yIx)(xIz). We do not send this component through another apparatus oriented 
along I ,  so we have a noncyclic evolution. Thus we can represent the sequence of 
filtering measurements as 

I ~ ) ' I ~ ) ( ~ l ~ ) - - t l Y ) < y l ~ ) ( ~ I ~ )  
or 

I Wi>-'lWz>+lVl3). 

During this non-cyclic, non-unitary and non-Schredinger evolution the initial and final 
states differ by a phase 

(15) 

where .l"'=(yll y2)(y21 y3)(1yal y l )  is a complex 3-point Bargmann invariant [13]. 
We will show that this phase CD is purely of geometric nature. From our definition of 
the geometric phase (7) we can show [14] that the phase acquired by the system during 
an evolution from point il(yl) to point II(yr2) plus the phase acquired from point 
II(y2) to l l (yr3)  is not the same as that of the phase acquired by the system during an 
evolution from point Il(yr1) to Il(w3). The excess geometric phase (this shows the non- 
integrability nature of the phase) is given by 

(16) 

Q, = arg<zly)(yIr)(xlz) = -arg<yrll v2)<yZl v I 3 ) ( y I 3 [  VI> = arg A(>) 

[%I:- UQ,J?+LQ,xI:} = - ~ ~ ~ < v I I Y I z ) < v I ~ I  l3)(V3l VI). 
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In the above filtering experiment, since I P,) is in phase with I y2) and I y2) is in phase 
with I w,> we have [Q&=O and [Q&=O. This shows that the phase difference @ in the 
filtering experiment is nothing but the geometric phase acquired by the system in going 
from a point n ( y 1 )  to a point n(y3), i.e. @=[@&. 

To make the general geometric phase more useful we outline (witbout going into 
much detail) how to measure this non-cyclic phase in an interference experiment. In 
an interferometric setup, the incident wave (it could be, say, a neutron beam) I yj) is 
split coherently with a beam splitter into two equal subwaves. A refractive index material 
in the path of subwave 1 can be kept to cause a U(1) phase change P of the state. 
Subwave 2 acts as a reference beam. The two subwaves I yl> =exp(ip)I vi> and I yz> = 
1 vi) recombine to produce an interference pattern. 

“4 w l > +  I I~)II~=(~ +COS P).  (17) 

Now a magnetic field is introduced in path 1 of the interferometer to affect a non-cyclic 
parallel transportation [15] of the state lyl> to R(q4)Iy). Here, R(Q) is a rotation 
operator which does just this job. When we  recombine^ the parallel transported state 
with subwave 2 an interference pattern is produced 

I(P, @)=f llR(b)I PI> + I PU~) 112=(1 +Re(yr2IR(Q)I P I  >) 

or 

KP.  @ ) % ( l + l < ~ i l ~ r > l  cos(P+@)). (18) 

Here, Q = @z is the non-cyclic geometric phase acquired by subwave 1 while undergoing 
parallel transportation and ( yil R( $)I vi> = ( yil vr> = I ( yil yr>l exp(iQg). Thus, com- 
paring the two interference patterns we can infer the geometric phase Qg. The shift -4 
of the interference pattern recorded with and without the phase object as a function of 
auxiliary phase P is crucial in determining the non-cyclic geometric phase. The measuk- 
ment of non-cyclic phase via the interferometer method and polarimeter method is 
discussed by Wagh and Rakhecha [16]. 

To summarize our findings, we present a compact expression for the geometric 
phase in the case of non-cyclic, non-unitary and non-Schrodinger evolutions (in fact, 
for all arbitrary quantum evolutions) without explicitly closing the end-points by a 
geodesic. This non-local phase is inherently present in all quantum evolutions. Also, 
we have shown that the geometric phase defined in this paper is a unique one and it 
reduces to the known definition of the geometric phase in the case of cyclic, unitary 
and Schrodinger evolutions o f  quantum systems. Two non-trivial examples are studied 
to realize the geometric phase. Detail discussion and relation between the non-cyclic 
geometric phase, the quantum metric tensor [17-191 and the length of the curve [20] 
will be reported elsewhere [14]. 
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